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Motivation

Exact inference on the Ising model defined on a planar graph is
easy for zero external fields (Kasteleyn, Fisher and others, 1960s):

p(x) =
1
Z
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Otherwise is intractable, #P (Barahona, 82).

Recently, the Fisher & Kasteleny method has been introduced in
the Machine Learning community:

I "Approximate inference using planar graph decomposition",
Globerson A & Jaakkola T (NIPS 07)

I "Efficient Exact Inference in Planar Ising Models", Schraudolph N & Kamenetsky D,
(NIPS 08)

Both perform exact inference on an easy planar model
We directly approximate Z on difficult planar graphs.
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Motivation

Loop Calculus and Belief Propagation (BP)
Exact Z of a general binary graphical model can be expressed as
a finite sum of terms that can be evaluated once the BP solution
is known. (Chertkov & Chernyak, 06a)

Z = ZBP · z, z =

(
1 +

∑
C∈C

rC

)

Each term corresponds to a
generalized loop (subgraph
with no degree 1 vertices)

Summing all terms is intractable... but truncation can provide
improvements on BP (Gómez et al 07, Chertkov & Chernyak, 06b).
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Motivation

2-regular loops non 2-regular loops

2-regular loop : A loop where all nodes have degree two.
2-regular part. function Z∅ : Approximation including all 2-regular

loops only. Z∅ = ZBP · z∅, z∅ = 1 +
∑

C∈Cs.t.|āC|=2,∀a∈C rC.

Triplet : A node with degree 3 in the Forney graph.
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Motivation

"Belief Propagation and Loop Series for planar graphs",
(Chertkov et al, 08)

The 2-regular partition function Z∅ can be expressed as a sum of
weighted perfect matchings.
For planar graphs, Z∅ can be computed in polynomial time.
The full loop series can be expressed as a sum over so-called
Pfaffian terms, and each term may sum many loops.

Contribution
We develop an algorithm to compute the full Pfaffian series.
Empirical analysis:

I Compare Loop and Pfaffian series
I Analyze the accuracy of the Z∅ approximation.
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Loop series for planar graphs
Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

1 Find stationary point of BP.
2 Obtain 2-core.
3 Construct planar embedding.
4 Obtain extended graph Gext.
5 Obtain Pfaffian orientation for the

edges of the extended graph→ G′ext.
6 Construct skew-symmetric matrices Â

and B̂.
7 The 2-regular partition function is:

Z∅ = ZBP · z∅,
z∅ = sign

(
Pfaffian

(
B̂
))
· Pfaffian(Â).
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For every face, the number
of clockwise oriented edges
is odd.
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Loop series for planar graphs
Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

1 Find stationary point of BP.
2 Obtain 2-core.
3 Construct planar embedding.
4 Obtain extended graph Gext.
5 Obtain Pfaffian orientation for the

edges of the extended graph→ G′ext.
6 Construct skew-symmetric matrices Â

and B̂.
7 The 2-regular partition function is:

Z∅ = ZBP · z∅,
z∅ = sign

(
Pfaffian

(
B̂
))
· Pfaffian(Â).

Âij =


+µij if (i, j) ∈ EG′

ext

−µij if (j, i) ∈ EG′
ext

0 otherwise
.
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+1 if (i, j) ∈ EG′

ext

−1 if (j, i) ∈ EG′
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Loop series for planar graphs
Computing the full Pfaffian series

Computing full loop series
Denote T the set of all possible triplets in G.
Consider a subset Ψ ∈ T with an even number of triplets.
Loops in G including the triplets in Ψ correspond to perfect
matchings on another extended graph GextΨ .
Exact Z can be written as a sum of Pfaffian terms:

z =
∑
Ψ

ZΨ, ZΨ = zΨ

∏
a∈Ψ

µa;ā, zΨ = sign
(
Pf
(
B̂Ψ

))
· Pf

(
ÂΨ

)
.

The 2-regular partition function Z∅ correponds to Φ = ∅.

Gómez V, Kappen HJ, Chertkov M () 1 Sept 2009 8 / 15



Loop series for planar graphs
Computing the full Pfaffian series

Computing full loop series
Denote T the set of all possible triplets in G.
Consider a subset Ψ ∈ T with an even number of triplets.
Loops in G including the triplets in Ψ correspond to perfect
matchings on another extended graph GextΨ .
Exact Z can be written as a sum of Pfaffian terms:

z =
∑
Ψ

ZΨ, ZΨ = zΨ

∏
a∈Ψ
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Experiments
Setup

Model
We consider binary pairwise models (Ising).

I Interaction strengths {Ja;{ab,ac}} ∼ N (0, β/2).
I External fields {Ja;{ab}} ∼ N (0, βΘ).

Θ and β determine how difficult the inference problem is.
For Θ = 0 problems are easy, i.e. Z∅ is exact.

Error measure : errorZ′ = | log Z−log Z′|
log Z .
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Experiments
Full series

A random instance: Θ = 0.1 and β ∈ {0.1, 0.5, 1.5}.
Both loop and pfaffian terms are sorted by absolute value in
descending order.
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Experiments
Setup

We compare the Z∅ approximation with:
Truncated Loop-Series for BP (TLSBP): Gómez et al. (07’).
Cluster Variation Method (CVM-Loopk): Heskes et al. (03’).
Tree-Structured Expectation Propagation (TreeEP) : Minka & Qui (04’).

When possible, we also compare with the following two variational
methods which provide upper bounds on the partition function:

Tree Reweighting (TRW) : Wainwright et al. (05’).
Planar graph decomposition (PDC) : Globerson & Jaakola (07’).
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Experiments
Grids: Ising 7x7 (attractive interactions)
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Experiments
Grids: Ising 7x7 (mixed interactions)
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Experiments
Grids: scaling with model size (very weak local fields, Θ = 0.01)
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Approximate inference on planar graphs using Loop
Calculus and BP
Conclusions

Conclusions
Without the requirement of searching for loops, the Z∅ corrects the
BP approximation even in difficult problems.
Significant improvements are always obtained for sufficiently large
external fields.
Z∅ is competitive with other state of the art methods for
approximate inference of Z.
Computational cost: substitute brute-force evaluation of the
Pfaffians by a smarter one available for planar graphs:
O(N3)→ O(N3/2) (Gallucci 00’, Loh and Carlso 06’).
Consider extensions to non-planar graphs.
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